Module 3

s JSP: (Introduction)

The first JavaServer Pages specification was released in 1999. Originaly JSP was
modeled after other server-side template technologies to provide a simple method
of embedding dynamic code with static markup. When a request is made for the
content of a JSP, a container interprets the JSP, executes any embedded code, and
sends the results in aresponse.

= Jsp enables to mix static HTML with dynamic generated content.

= JspasHTML with java code inside.

= Jsp pages are trandated into servlets.

» The Servlets are compiled and at the request time the compiled serviet are

executed.

» |nwriting jsp pagesisreally another way of writing servlet.

Need For JSP (Disadvantages of Servlet)

=% Servlets are not good at presentation.
» |tishard to write and maintain HTML i.e using print statement to generate
HTML.
= Changing the Look and feel the application requires the servlet code to be
updated is recompiled.
% We can’t use standard HTML tools.
» HTML isinaccessible to non java developers. Web developers expert who
doesn’t know JAVA Programming.
Benefits of JSP:

=% Easier to write and maintain HTML.
= \We can use website devel opment tools (Dreamweaver)

% We can divide our development team (presentation and Business logic)

< JSP Architecture

= JSPsrun in two phases
o Trandation Phase
0 Execution Phase
= In trandation phase JSP page is compiled into a servlet called JSP Page
Implementation class

= |n execution phase the compiled JSP is processed

Receive
Request
JSP Servlet
Current?

JSP Sew!?et Generate JSP
ILLoaded? Servlet Source

JSP Container

Load Servlet Compile JSP
Servlet
L

Generate

Response
Send /

Response /

s JSP Life Cycle

JSP follows a three-phase life cycle: initialization, service, and destruction as

shown in the fig below.

JavaServer Page

s ™
jsplnit()
(Load Resources)
Request —>| _jspService()
Re sponse < (Accept Requests)
jspDestroy()
(Unload Resources)
\. 7

% While a JSP does follow the Servlet life cycle, the methods have different
names. Initialization corresponds to the jsplnit() method, service
corresponds to the _jspService() method, and destruction corresponds to the
jspDestroy() method.

% The three phases are all used the same as a Servlet and allow a JSP to load
resources, provide service to multiple client requests, and destroy loaded
resources when the JSP is taken out of service.

% JSP is designed specificaly to simplify the task of creating text producing
HttpServlet objects and does so by eliminating al the redundant parts of
coding a Servlet.

= Unlike with Servlets there is no distinction between a normal JSP and one
meant for use with HTTP. All JSP are designed to be used with HTTP and
to generate dynamic content for the World Wide Web.

% The single JSP jspService() method is also responsible for generating
responses to all of the HTTP methods.

HelloWorld jsp:

<html>

<head>

<title>Hello World!</title>
</head>

<body>

<h1>Hello World!</h1>
</body>

</html>

Web Application automatically deploys any JSP to a URL extension that matches
the name of the JSP. HelloWorld.jsp is adso actually compiled into equivalent
Servlet code.

Thisis done in what is called the translation phase of JSP deployment and is done
automatically by a container.

JSP trangdlation both is and is not something of critical importance for a JSP
developer to be aware of. JSP trandation to Servlet source code is important
because it explains exactly how a JSP becomes Java code. While it varies slightly
from container to container, all containers must implement the same JSP life cycle
events.

Understanding these life cycle methods helps a JSP developer keep code efficient
and thread-safe. However, JSP tranglation is not of critical importance because it is

always done automatically by a container.

s Four different elementsareused in constructing JSPs

(@)

Scripting Elements
o Implicit Objects
0 Directives
0

Actions

s Scripting Elements
There are three types of Scripting elements.

1. Declaration
2. Scriptlets

3. Expression

1. Declaration :

% JSP declaration allows us to define methods and variables that get inserted
into main body of servlet class and outside the _jspService() .

=% |t doesn’t produce any output that is sent to the client.

% Syntax:-
<%! Script code %>

% Example 1:-

<h1>some heading</h1>

<%!
private String randomHeading(){

return (“<h2>"+math.random()+"</h2>");

}

%>

<body>
<%out.printIn(”’--"+randomHeading()+”--""+);%>

</body>

= Example 2:-

<%!
public void myFunOne(){
System.out.printIn(“function one”);
}

public void myFunTwo(){
System.out.printIn(“function two”);
}
int myVariable =123;

%>

% The function and variable are available to the jsp page as well as to the

servlet in which it is complied.

2. Scriptlets:

% Scriptlets are used to embed java code in jsp pages.

= Content of JSP code goes into —jspService() method.

% Scriptlets have access to the automatically defined variables(request,
response, session, out ,application etc.)

= \We can’t define methods inside scriptlet.

=% Systax:

<% sciptlet code %>

=% Example 1:
<html>

<body>

<% out.printIn(“This is my first scritlet code”)%>

<%
int Xx=5,y=7;
Int z=x+y;
out.printin(z);
%>
</bory>
</html>

% Example 2:

<% if(Math.random()<0.5{ %>
Good

<%} else{ %>
Bad

<%} %>

3. Expression

% Expressions are used to write dynamic content back to the browser.

= JSP expression used to insert values directly into output.

% Syntax:

<%= expression %>.

% The expression is evaluated and then converted to string and inserted in the
page.

= Evaluation is performed at runtime and thus has full access to information
about the request.

% Example-

<%= Math.random()%0>
<%= Math.sgrt(9)%>

<%= new java.util.Date()%>

= |n expression we can use a number of predefined variables(implicit objects)

s JSP implicitly Objects

Scope
Implicit objects provide access to server side objects e.g. request, response, session
etc.
There are four scopes of the objects
» Page: Objects can only be accessed in the page where they are referenced
» Request: Objects can be accessed within all pages that serve the current
request.
* (Including the pages that are forwarded to and included in the original jsp
page)
» Session: Objects can be accessed within the JSP pages for which the objects
are defined
= Application: Objects can be accessed by all JSP pages in a given context

s+ JSP supports following implicit objects.

request: Reference to the current request

response: Response to the request

out: Object that writes to the response output stream

session: session associated with current request

application: Servlet context to which a page belongs

pageContext: Object to access request, response, session and application
associated with a page

config: Servlet configuration for the page

page: instance of the page implementation class (this)

exception: Available with JSP pages which are error pages

% request:- This is the HttpServletRequest object associated with request.
Thisisaninstance of javax.servlet. HttpServletRequest object. Each time
a client request a page , the JSP engine creates a new object to represent
that request. It gives us to access to the request parameters, request type
and incoming Http Header information like Cookies etc.

% response:-The response object is an instance of HttpServletResponse
object. Just as the server creates the request object it also creates an
object to represent the response to the client. The response object defines
the interface that deals with creating new Http Headers. Through this
object we can add new cookies, HTTP Status code etc.

% out: - the out is an implicit object is an instance of
javax.servlet.jsp.JspWriter object. It is used to send content in a
response. The initial jsp writer object is instantiated differently
depending on weather the page is buffered or not. Buffering can be easily
turned off by using the “buffered="false’ attribute of the page directive.
Its visibility scope is specific to each jsp page.

out.printin(*Sample Text”); // set text to response object

out.flush();

= session:- the session object is an instance of
javax.servlet.http.HttpSession and behaves exactly same way that session
object behaves under java servlet. Session object is used to track the
client session between client request. Its scope is specific to each
browser window. The session is declared by specifying the session
attribute true in a page directive.

=% application:- the variable is an instance of
javax.servlet.ServletContext as obtained by getServietContext(). Servlet
and jsp page can store persistent data in the ServletContext object.
ServletContext has setAttribute() and getAttribute() to store data
associated with specific keys. It is shared by all servlet and jsp pages on
the web application.

% pageContxt:- The pageContext implicit scripting variable is an
instance of a javax.servlet.jsp.PageContext object. It represents the
context of a single java server pages including all other implicit objects,
methods for forwarding to and including web application resources and
scope for binding objects to the page.

% config:- It is an instance of javax.servlet.ServletConfig. The object
allows the jsp programmer to access the servlet or jsp initiaization
parameters such as path or file location provided in the web application
deployment descriptor.

=% page :- The page object is an actual reference to the instance of the page.
It can be thought of an object that represents the entire jsp page. The
page object is direct synonyms for the this object.

% Exception:- This is the type of javalang.Throwable object.
Exception object is a wrapper containing the exception thrown from
previous page. It is typically used to generate an appropriate response to

the error conditions.

% Directives
A jsp directive affects the overall structure of the servlet that results from jsp
page.
The jsp specification defines three directives.
1. pagedirective
2. include directive

3. taglib directive

% pagedirective:- Thetag provides page specific properties such as
character encoding, the content type for the page response and weather the
page should have implicit session object or not.

Example —
<%@ page import="pkgename.*” session=""false/true %>

=% include directive :- it is used to include the content of an external file.

Example:-
<% @ include file="header.html”%>

<%@ include file="included.jsp” %>
=% taglib directive:- It isused to import custom actions defined in tag

libraries.
Example:-

<%@ taglib tagdir="/WEB-INF/tools/cools” prefix="cools” %>

% Page Directives Basics and Types

It provides the page specific information to the jsp container like type of content
jsp produced, the default scripting language etc. Attributes of the page directive are
import, contentType ,pageEncoding, session, iSEL Ignored, errorPage ,buffer,
autoFlush, isThreadSafe, isErrorPage, language ,extends and info.

=% |anguage —the language attribute defines the scripting language to be used by
the scriptlet, expression and declaration occurring in the jsp.
<%@ page language="java” %>
% Extends: -the extends attributes designates the super class of the servlet that
will be generated from the jsp page. The attribute is normally reserved for the
developers of vendors that implement fundamental changes to the way in which
the page operates.
<% @ page extends="pkgname.class” %>
=% Import —it is used to specify the package and classes that should be imported to
the servlet in to which the jsp page get translated. The default import list is
javalang.* , javax.servlet.* , javax.servlet.http.* ,javax.servlet.jsp.*; .
<%@ page import="pkgname.class” %>
=% Session :- the session attribute controls weather the page participated in the
HTTPSession or not.
<%@ page session="true” %>
If true the implicit scripting variable session refers to the current /new session

for the page. If false the page doesn’t participated in the session.

= Buffer:-the buffer attribute specifies the size of the buffer used by out variable
which isajsp writer.
If the attribute value is none then there is no buffering and output is written
directly through to the appropriate servlet’s response PrintWriter.
If the buffer size is specified, then the output is buffered with the buffered size
and not sent to the client until at least the buffered size. Depending upon the
value of autoFlush , the content of the buffer is either automatically flushed or
exception thrown when overflow occurs.

<%@ page buffer="size in kb %>

<%@ page buffer="none” %>

% isThreadSafe :-The isThreadSafe attribute controls weather the servlet that
results from the jsp page will allow concurrent access or will ignore that no
servlet instance posses more than one request at atime.

If the value is true the jsp container may choose to dispatch multiple client
requests to the page simultaneously. The default value istrue.
<%@ page isThreadSafe ="true” %>

= isErrorPage:-The isErrorPage attribute indicate if the current jsp pageis
intended to be an Error page for other JSP. If true then the implicit scripting
variable exception is defined. If false then the exception implicit object is
unavailable.

% errorPage:-Define arelative URL to aresource in the web application to which
any java programming language Throwable object thrown.

= contentType:- the contentType attribute defines the character encoding for the
JSP page and the MIME type for the response of the jsp page. The default value
of the contentType is * text/ntmI” with 1SO-8859-1 character encoding for
regular jsp.

= pageEncoding — pageEncoding defines the character encoding for the jsp page.
The default of the pageEncoding attribute is | SO-8859-1 for regular jsp and
UTF-8 for thejspin XML.

= |nfo:-String returned by the getServletinfo() of the compiled serviet

Page Directives Example

<%@
page language="java”
buffer="10kb”
autoflush="true”
errorPage="/error.jsp”
import="java.util.*, javax.sql.RowSet”

00>

s EL(Expression Language)

=% One of the features of JSP 2.0 is ajsp specific expression language
commonly called as JSP EL.

% EL provides asimple and elegant solution to embading expression in jsp and
provides a method to avoiding atraditional JSP expression <%= %>

% JSPEL issimple, powerful and aternative to scripting elements.

= Features of JSP EL such that it can be used anywhere in JSP.

=% Bydefault JSP EL is diasable for web application that uses web.xml file
defined by servlet 2.3 or the followings.

% Application that uses servlet 2.4 defined web.xml , the JSP EL is
autometically enabled.

= The JSP EL handles both expression and literals.

=% Expression are always enclosed with ${} character.

s Expression Language supports following capabilities:-

=% Consise access to stored objects- To output a scoped variable i.e object
stored with setAttribute in the PageContext,HttpServletRequest, HttpSession
or ServetContext.

=% Shorthand notation for bean properties:- To output a company name
property of a scoped variable Company we can use- $
{ Company.companyName }

% Simple access to collection elements — To access an element of an
Array,List, Map we use ${variable[index/key] }

% A small but useful set of operators :- we can use several set of arithmetic,
relational , logical or empty testing operators.

= Conditional output :- ${ test ? operation 1 : operation 2 }

= Autometic type conversion :- Remove the need of most type casts.

= |t shows empty value instead of error message.

% Access the standard types of request data, we can use one of the several

predefine implict objects.

» Deactivation the EL in entair web application

The jsp 2.0 expression language is autometically deactivated in the web
application whose deployement descriptor refers to servlet specification version
2.3 or earlier.

» Deactivating the EL in multiple JSP Pages.-

In web application whose deployement descriptor specifies servlet 2.4 (JSP 2.0)
we can use el-ignored sub element of jsp-property . web.xml element to
designated the pages in which expression language should be ignored.

Putting <el-ignored> in Deployement Descriptor
<web-app>
<jsp-config>
<jsp-property-group>
</jsp-property-group>
</jsp-config>
</web-app>
» Deactivating the EL in individual JSP Pages:-

To disable EL evaluation in an individual page, supply false as the value of
isEnabled attribute of page directive.

<%@ page iSELEnabled="false” %>

% Using Custom Tags

A custom tag is a user defined JSP language element. When a jsp page
containing a custom tag is transalate into servlet , the tag is converted to
operations on an object is called atag handler.

JSP tag extensions let you create a new tags that can be enserted directly in to
javaserver page like abuilt in tags.

Jsp 2.0 specification introduced simple tag handlers for writing these custom
tags.

To write custom tag we can simply extend SimpleTagSupport class and
override doTag() method.

Custom tag provide a method to cleanly separate logic from content.

Custom tags are easy to use.

Custom tags are portable.

Example:-

HelloTag.java

package com.example;

import javax.servlet.jsp.tagext.*;
import javax.serviet.jsp.*;

import java.io.*;
public class HelloTag extends SimpleTagSupport{
public void doTag() throws JspException,| OException{

JspWriter out=getJspContext().getOut();
out.printin("Hello Custom Tag!");

}
Create atld file

Custom.tld
<taglib>
<tlib-version>1.0</tlib-version>
<jsp-version>2.0</jsp-version>
<short-name>Example TL D</short-name>
<tag>
<name>Hello</name>
<tag-class>com.example.HelloTag</tag-class>
<body-content>empty</body-content>
</tag>
</taglib>

Hello.jsp

<%@ page language="java" contentType="text/html; charset=I SO-8859-1"
pageEncoding="1S0-8859-1"%>

<%@ taglib prefix="c" uri="WEB-INF/custom.tld" %>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=1S0O-8859-1">

<title>Insert title here</title>

</head>

<body>
<c:Hello/>

</body>

</html>

% JSP-STANDARD TAG LIBRARY (JSTL)

% Exception Handling in JSP
If an exception isto be thrown from either servlet or jsp, tomcat

automatically generates a simple error page.

Ex:-

Throwable .jsp

<%

If(true)

Throw new Exception(“Excepion occured”);
%>

Threr are 2 types of exception 1. Translation time error 2.Runtime exception
Transalation time error coours during page compilation , thisresult is an
internal server error -500

An exception on the other hand occured when page is compiled and servlet
IS running.

Exception in JSP can handled in 3 ways:-

1. Java Exception handling mechanism

2. Dealing with exception with page directive

3. Dealing with exception with deployment descriptor.

Java Exception Handling mechanism
By using try-catch block.

<%

tryf

} catch(Exception e){

}

00>

Dealing with Exception by page dir ective:-

Two attributes of the page directive errorPage and isErrorPage are used to
deal with exception.

In Deployment Descriptor:-

Error page can be defined on a per-web-application basis by web application

Deployemnt Descriptor i.e web.xml.

The error-page element is used to define error handling based on the type of

exception thrown.

The functionality can be configured in web.xml by using error-page

element with exception-type and location sub element.

<error-page>
<error-type>Throwable object</error-type>
<location>/Relative URL </|ocation>
</error-page>

When even a web component throws an exception , the web container call

the respective error page present in the location tag.
Http Status Code:
Example-
<error-page>
<error-code>404</error-code>
<location>/FilenotFound.jsp</location>

</error-page>

% Session Management

= Session in JSP:- Session handling is mandatory when a request of data need to
be sustained for future use.

=% The fullowing are some of the methods to handle session.

0 Whenever arequest carries the server generated unique session id which
is stored in client machine.

o Cookies stores information in client’s browser.

0 InURL rewriting the session information is appended to the end of the
URL.

0 Storing some information in hidden fields.
=% Session creation and identification in JSP pages:

The jsp pages that need session management must use the following page
directive.

<%@ page session="true” %>

By using the above directive in jsp page we can refer to the session which is
associated by means of implicit variable session.

% Methods of HTTP Session interface:
= public String getld() — it returns a unique identifier value.

= public long getCreationTime() — it returns the time stamp i.e when the
session was created.

= public void inValidated() — it invalidated the existing session.

Example-

Forml.jsp

<%@ page language="java" contentType="text/html; charset=I SO-8859-1"
pageEncoding="1S0-8859-1"%>

<IDOCTY PE html PUBLIC "-//W3C//[DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/locose.dtd" >

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=1 SO-8859-1">
<title>Insert title here</title>
</head>
<body>
<form method="post" action="sessionl.jsp">
<input type="text" value="" name="username" />
<input type=submit value="enter" />
</form>
</body>

</html>

Sessionl.jsp
<%@ page language="java" contentType="text/html; charset=I SO-8859-1"
pageEncoding="1S0-8859-1"%>

<IDOCTY PE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional/EN"
"http://www.w3.org/TR/html4/locose.dtd" >

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=1SO-8859-1">
<title>Insert title here</title>
</head>
<body>
<%

String name=request.getParameter("username”);

if(namel=null)

{

session.setAttribute(* username”,name);

%>
next page
</body>

</html>

DisplaySession.jsp

<%@ page language="java" contentType="text/html; charset=I SO-8859-1"
pageEncoding="1S0-8859-1"%>

<IDOCTY PE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional/EN"
"http://www.w3.org/TR/html4/locose.dtd" >

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=1SO-8859-1">
<title>Insert title here</title>
</head>
<body>
Welcome to session continue page
<%=sess on.getAttribute(" username™) %>
</body>
</html>

% JSP With JAVA Beans

<+ JSP with Database:
Connect to JSP to access database:
The jsp program has to do severa things.

= |dentifying the source file for javato handle SQL.
= Load driver programs that |ets java connect to database

= Execute the driver to establish connection

JSP systax to do this as follows:

<%@ page import="java.sql.*” %>

<%

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

Connection con=null;

con =DriverManager.getConnection(*“jdbc:odbc:cit”,” ”,” ™),
out.printIn(*Database Connected”);

%>

Explanation :-

The page directive at the top of the page allows the program to use methods
and classes from java.sgl* package that knows how to handle SQL quries.
The Class.forName methods |oads the driver. The
DriverManager.getConnection() methods connect the program to the
database identified by the data source “cit” allowing the program to make
guriesinsert, select etc.

The DriverManager.getConnection() creates a connection object which will
be used latter when we make SQL quries.

In order to make queries we will need a Statement Object.

Inorder to make a Statement object we need a connection object.

In order to make a Connection object we need to Connect to the Database.

In order to connect to the database we need to load the Driver that can make
the connection.

=% |nserting Records in database using JSP

Inorder to insert or to do any kind of SQL queries we have to

1. Create a statement objec- which has the methods for handling SQL

2. Define SQL queries— such asinsert queries

3. Execute the queries

Statement st=conn.createStatement();

String s="insert into Student values(1,”Bswajit’);

st.executeUpdate(s);

the conn object that has previously created has the method that allows to
create a statement object by calling createStatement() method.

=% |nserting datafrom an HTML Form in database using JSP
In athree-tier application, the JSP acquirs the data to be inserted into a
databse from an HTML Form.
Step involves
1. AnHTML Form with named input fields.
2. JSP statement that access the data sent to the server by the Form
3. Construction of an insert query based on this data by the JSP
Program.

4. Execute the query by the JSP program.

=% Retriving the data from database using JSP ResultSet
A ResultSet object is essentially atable of returned results as done for
any SQL select statements. The executeQuery() method of statement

object isused in this case. The stepsinvolved in a select retrival are:-

1. Constuct the desired Select Query as ajava String.
2. Execute the executeQuery() method and saving theresult in a
ResultSet object.
3. Process the ResultSet using two of its method next() and getString()
a. Letr bethe ResultSet object holds set of results
r.next() moves the pointer to the next row of the result set
b. r.getString(“attribute-name”) extracts the given attribute value

from the current row pointed by r .

Example:-

String s="select * from Students”;
ResultSet r= stmt.executeQuery(s);
while(r.next())
{
out.printin(“
SI.No”+r.getString(*id”));

out.printIn(*
Name”+r.getString(“name”));

Note: if the attribute is not a String for example if it isanumeric value
thenwe havetouse int N=r.getInt(“attribute-name”). Similarly

double d=r.getFloat(“attribute-name”);

«* MVC Architecture:

One of the most common design patternsis Model View Controller.
Model:

Model doses all computational work. All communication with model is done

viamethods. Model encapsulates al the core data and functionality.
View:-

View encapsulates the presentation of the data. View presents the datain

some form to a user, in the context of some application function. View gets
result from the controller. View can also get result directly from the model.
It isthe HTML pages that is return to the user, is frequently created by JSP.

Controller:

Controllers tell the model what to do. The Servlet class acts as the
controller. The Servlet gives any relevant information from the user request

to the model. The Servlet takes the result and passes them to the view.

MV in tha Serviet & J5F world
{CHTROLLITE
Ttk it b 476w T g
forest el i el i 1)]
the rodic
Tal 1he rodel Tp mcht 1320
i PR TRE s el fTelE
4 %". s o he wow Cibe T34
! Coettraller
l
WILIL
VikwW

B Ve oo b b, ool T
i 10 ke w1 b
ruke far pe ey and ipdony ha
i

ARl {or the
A TG The

i of 2w I fromi

Fa Dondvalier fal Pk
deectly the Conirclier peta
Piod e 7 8 i i mhstrg
i Wt oo el) Tk
o et m L Th weLr

vl Tha o baick 2 *he
fmlll:'rr

A G coevHE e vhe
riden for wien b do it i owld be
ol ol St Vel bn WD

L7z o ooy gt of! Sl ot
faky bn P by (g o

ekl ol b gl i or the
ol R cim a1l G
e thdt pamern fee ke |

s Spring Framework

Spring is an open source layered Javal J2EE application framework

The Spring Framework is licensed under the terms of the Apache License,
Version 2.0 and can be downloaded at:

http://www.springframework.org/download

Mission:
e J2EE should be easier to use

» It'sbest to program to interfaces, rather than classes. Spring reduces the

complexity cost of using interfaces to zero.
» JavaBeans offer agreat way of configuring applications

* OO design is more important than any implementation technology, such as
J2EE

» Checked exceptions are overused in Java. A framework shouldn't force you

to catch exceptions you're unlikely to be able to recover from.

o Testability isessential, and a framework such as Spring should help make
your code easier to test

e Spring should be a pleasure to use
» Your application code should not depend on Spring APIs

« Spring should not compete with good existing solutions, but should foster
integration. (For example, JDO and Hibernate are great O/R mapping

solutions. Don't need to develop another one).

M odules of the Spring FrameworKk:

The Spring Framework can be considered as a collection of frameworks-in-the-

framework:
» Core- Inversion of Control (10C) and Dependency Injection
e AOQOP - Aspect-oriented programming

 DAO - Data Access Object support, transaction management, JDBC-
abstraction

* ORM - Object Relational Mapping data access, integration layers for JPA,
JDO, Hibernate, and iBatis

* MVC - Modd-View-Controller implementation for web-applications

» Remote Access, Authentication and Authorization, Remote Management,

Messaging Framework, Web Services, Email, Testing, ...

Spring ORM Spring Web

Hibernate support WebApplicationContext
iBatis support Multipart resohver
JDO support ‘Web utilities
Spring Web
Spring AOP MvC
Source-level metadaia Web MVC Framework
ACP infrastruchure J;MPG?GHQ{T
- city
Spring Context PDF | Excel
i Application contest
Spring DAO i
Tranzaction infrastructure Validation
JDBC suppart JNDL EJB i
DA 21 . Ed aumﬂ & Ramating

Spring Core

Supporting ulilities
Bean container

ItisVery loosely coupled, components widely reusable and separately packaged.

Advantages of Spring Architecture:-

Enable you to write powerful, scalable applications using POJOs

Lifecycle — responsible for managing al your application components,
particularly those in the middle tier container sees components through well-
defined lifecycle: init(), destroy()

Dependencies - Spring handles injecting dependent components without a

component knowing where they came from (10C)

Configuration information - Spring provides one consistent way of
configuring everything, separate configuration from application logic,

varying configuration

In J2EE (e.g. EJB) it is easy to become dependent on container and
deployment environment, proliferation of pointless classes
(locators/del egates); Spring eliminates them

Cross-cutting behavior (resource management is cross-cutting concern, easy

to copy-and-paste everywhere)

Portable (can use server-side in web/ejb app, client-side in swing app,
business logic is completely portable)

