
What	is	Version	Control
Version	control	systems	are	software	tools	that	help	software	team	to

manage	their	changes	in	code	over	time.	Version	control	keeps	track	of

every	modification	to	the	code,	if	a	mistake	is	made,	developers	can

revert	back	the	changes	or	compare	the	code	with	earlier	version	of

the	code.	One	of	the	popular	and	widely	used	version	control	system	is

GIT.

What	is	GIT
GIT	is	by	far	the	most	widely	used	version	control	system	in	the	world

used	by	the	developer	community	and	other	professionals.	GIT	is	a

mature,	actively	maintained	open	source	project	developed	by	Linux

Trovalds(creator	of	LINUX).	Because	of	it’s	reliablity	and	vast	features,

a	staggering	number	of	software	projects	reply	on	GIT	for	version

control,	including	huge	commercial	software	companies	as	well	as

open	source	projects.	GIT	is	a	de	facto	standard	at	LEAPFROG,	all	of

our	projects	source	code	is	managed	in	GIT.

What	is	GitHub
GitHub	is	Git’s	cloud-based	publishing	tool	and	hosting	platform.	It

also	has	a	desktop	application	for	locally	storing	projects.	With	GitHub,

you	can:

Bring	projects	to	life.	Git	repositories	are	hosted	on	GitHub

and	made	“live.”	This	enables	developers	to	post	a	site	or

application	when	it’s	in	development	stages.	By	sending	a	link

to	a	GitHub	project,	clients	can	easily	test-drive	a	site	in

progress	with	functionality,	rather	than	just	looking	at	flat

mockups.

Browse	the	most	popular	development	projects.	Browse

GitHub	for	“trending”	repositories—an	interesting	way	to

check	out	other	developers’	work	and	check	out	“starred”

projects	that	are	recommended	by	GitHub	staff	members.

Public	repository	files	can	be	downloaded	as	zip	files	and	saved

locally	on	your	computer.

On	GitHub,	you	can	Star,	Watch,	and	Fork:

Fork:	Make	a	copy	of	a	project	and	start	working	on	it	yourself.

Watch:	Get	updates	when	changes	are	made	to	a	project

you’re	following.

Star:	GitHub’s	version	of	the	“Like”	button	on	Facebook,	it’s	a

voting	system	that	enables	developers	to	vouch	for	projects

they	think	are	excellent.

Why	use	GIT
GIT	is	a	fast,	scalable,	distributed	version	control	system	with	an

unusually	rich	command	set	that	provides	both	high-level	operations

and	full	access	to	the	internals.	Here	are	some	of	the	major	features	of

GIT:

Distributed	in	Nature

GIT	is	a	distributed	version	control	system	where	each

developer	gets	their	own	local	repository,	complete	with	a	full

history	of	commits	and	branches.

Save	Time

GIT	is	lightning	fast,	although	we’re	talking	about	only	a	few

seconds	per	command,	it	quickly	adds	up	to	your	day.

Work	Offline

GIT	allows	you	to	work	while	you’re	offline,	with	GIT,	almost

everything	is	possible	to	do	on	your	local	machine,	be	it

commiting	the	code,	browsing	the	code	history,	create

branches.

Undo	Mistakes

It’s	almost	inevitable	that	developers	make	mistake	while

working	on	a	project.	A	good	thing	about	GIT	is	that	we	can

undo	almost	every	havoc	we	created	in	GIT.	Since	GIT	rarely

deletes	the	event	history,	this	provides	great	peace	of	mind	to

developers.

Install	GIT
Install	GIT	on	Mac	OS	X

Download	the	latest	Git	for	Mac	installer,	and	follow	the

prompts	to	install	the	GIT

OR

Install	Git	with	Homebrew

https://sourceforge.net/projects/git-osx-installer/files/

1.	 Open	your	terminal	and	install	Git	using

Homebrew:

$	brew	install	git

Install	GIT	on	Windows

Download	the	latest	Git	for	Windows	installer.

Install	GIT	on	Linux

Copy	following	commands	in	your	terminal.

On	Debian	/	Ubuntu	(apt-get)

sudo	apt-get	update

sudo	apt-get	install	git

Fedora	(dnf/yum)

sudo	dnf	install	git

or

sudo	yum	install	git

Once	installed	verify	the	installation	by	typing	following	in	your

terminal/(GIT	bash	in	windows)

git	--version

you	should	get	the	result	something	like

git	version	2.7.4

Configure	your	GIT	username	and	email,	these	details	will	be

https://git-for-windows.github.io/

associated	with	all	the	events	you	do	in	GIT.

git	config	--global	user.name	"Ram"

git	config	--global	user.email	"ram@jam.com"

Set	up	a	repository
Initializing	a	new	repository

To	create	a	new	repo,	use	the	 git	init .	It	is	a	one-time	command,

used	during	the	initial	setup	of	a	new	repo.	Executing	this	command

will	create	a	new	 .git 	directory	in	your	current	working	directory.

This	will	also	create	a	new	master	branch	by	default.

Cloning	an	existing	repository

If	a	project	has	already	been	set	up	in	a	repository,	the	 clone

command	is	used	to	obtain	the	clone	of	the	repository.	 git	clone

<repository-url> 	is	similar	to	 git	init 	such	that	it	is	also	a	one-

time	operation.

Using	Branches
git	branch

A	branch	in	GIT	represents	an	independent	line	of	development.	The

git	branch 	command	allows	you	to	create,	list,	rename	and	delete

the	branches.

Usage

create	new	branch

git	branch	<branch-name>

delete	branch

git	branch	-d	<branch-name>

rename/udpate	branch

git	branch	-m	<branch-name>

git	checkout

The	 git	checkout 	command	lets	you	navigate	between	the	branches,

tags,	commits	in	git.	Checking	out	a	branch	updates	the	files	in	the

working	directory	to	match	the	version	stored	in	that

branch/tag/commit.

Saving	the	Changes
git	add

The	 git	add 	command	adds	the	changes	in	the	working	directory	and

tells	GIT	that	you	want	to	include	the	updates	of	a	file(s)	in	the	next

commit.	The	 git	add doesn’t	really	affect	the	repository	in	any

significant	way;	that	changes	are	not	actually	recorded	until	you	run

git	commit .

Usage

git	add	<file>	|	<directory>

git	commit

The	 git	commit 	command	commits	the	added	file(s)	snapshot	to	the

project	history.	Once	you	run	 git	commit 	you	create	a	new	version	in

your	repository.

Usage

git	commit	-m	"<commit	message>"

git	ignore

You	can	ignore	a	file	or	directory	by	adding	a	.gitignore	file	on	your

repository.	For	example,	if	you	use	 java 	in	your	project	and	your

complier	generates	 .class 	files	which	you	don’t	want	to	share	with

other	team	members,	so	now	what	you	can	do	is	tell	git	to	ignore	all

.class 	files	in	your	project	and	don’t	track	the	changes	of	that	file.

Usage

#you	can	add	files	in	.gitignore	file

.class

.less

.log

**.pyc	#	all	the	files	with	extension	.pyc	also	within	sub-directories

#similarly	you	can	also	add	directories	to	.gitignore	files

dist/

downloads/

.eggs/

Updating	the	changes
git	pull

The	 git	pull 	fetches	the	files	from	the	remote	repository	and	merges

it	with	the	local	version.	The	 git	pull 	is	similar	to	other	git

commands	like	 git	fetch 	and	 git	merge .	The	 git	pull 	is

equivalent	to	 git	fetch 	+	 git	merge .

Usage

git	pull	<remote>	<branch-name>

git	push

The	 git	push 	is	used	to	push	changes	to	an	upstream	remote

repository	from	the	local	machine.	This	command	takes	two	command

A	remote	name,	eg	origin

A	branch	name,	eg	master

Inspecting	the	Repository
git	status

The	 git	status 	command	displays	the	state	of	the	working	directory

and	repository	in	whole.	It	lets	you	see	which	changes	have	been

added,	and	which	isn’t.

Usage

git	status

git	log

The	 git	log 	command	displays	committed	snapshots	and	lets	you	list

the	branch	history,	filter	it	and	search	for	the	specific	changes.

Usage

git	log

git	diff

The	 git	diff 	shows	the	changes	between	two	commits,	branches	or

tags.

Usage

git	diff	<commit1>	<commit2>

git	difftool

The	 git	difftool 	command	shows	the	changes	between	two

commits,	branches	or	tags	using	common	GUI	difftools,	eg	Meld,

Kdiff3	etc.

Usage

git	difftool	-d	<commit1>	<commit2>

Configure	merge/diff	tools

For	this	example	we	are	using	Meld.

git	config	--global	merge.tool	meld

git	config	--global	diff.tool	meld

Conflicts
While	merging	git	branches	(git	merge / git	pull),	git	may	report	a

merge	confict	error	with	the	files	that	have	conflict.	This	conflict

should	be	resolved.

With	 git	status ,	the	changes	in	the	files	and	the	files	that	are	to	be

resolved	could	be	figured	out.

GIT	leaves	markers	in	files	to	indicate	where	the	conflict	arose:

<<<<<<<<	Head

this	part	indicates	the	state	of	the	current	branch

========	this	indicates	the	break	between	the	conflicts

this	part	indicates	the	state	of	the	other	branch

To	resolve	conflicts:

Edit	the	area	between	<<<<<<	and	>>>>>>

Remove	the	status	lines	(<<<<<<	,	======	,	>>>>>>)

http://meldmerge.org/

git	add 	to	mark	it	resolved	and	finally	 git	commit 	to	finish

the	merge

Other	useful	GIT	commands
Following	are	some	handy	GIT	commands	that	will	save	your	time	and

headache.

git	cherry-pick

We	can	use	 git	cherry-pick 	to	cherry-pick	(merge	the	changes

made	in	the	commit)	with	a	given	SHA	and	merge	it	to	the	current

branch

Usage

git	cherry-pick	<SHA	hash>

git	stash

Stashing	takes	the	dirty	state	of	the	current	working	branch	and	push

it	in	the	stash	stack.	Stash	can	be	reapplied	any	time	just	by	popping

out	the	stash	stack	element.

We	can	stash	our	work	by	using	 git	stash

Similarly,	we	can	list	the	stash	stack	element	using	 git	stash

list

To	apply	the	stash	changes	to	the	current	brach,	use	 git

stash	pop	<index> .	It	removes	a	single	stashed	element	from

the	stash	stack	and	applies	it	on	top	of	the	current	working

branch,	ie.	do	the	inverse	operation	of	 git	stash 	save.

git	stash	apply	<index> 	is	like	 git	stash	pop ,	but	do	not

remove	the	state	from	the	stash	stack.

git	bisect

The	 git	bisect 	is	a	tool	that	allows	you	to	find	an	error-prone

commit	in	your	GIT	history.	To	get	started,	checkout	the	buggy	branch

and	find	the	good	commit(do	 git	log 	and	find	the	SHA	hash	that	is

good).

Start	the	bisect	with	 git	bisect	start

Then	mention	the	bad	commit	to	bisect	 git	bisect	bad	<SHA

hash>

Then	mention	the	good	commit	 git	bisect	good	<SHA	hash>

After	this	GIT	will	checkout	to	one	of	the	commits	from	the	range	of

good	and	bad	commit,	if	your	code	looks	good	in	it	mention	it	as

good(git	bisect	good)	or	else	if	it	is	not	what	you’re	expecting	then

note	it	as	bad(git	bisect	bad).	Repeat	the	process	until	you	find	the

ultimate	buggy	commit.

git	blame

git	blame 	will	reveal	for	every	line	in	the	file	the	author,	the	commit

hash	that	saw	the	last	change	in	that	file,	and	the	timestamp	of	the

commit

Usage

git	blame	<filename>

